

Ionization of Amino Acids

- Amino acids contain at least two ionizable protons, each with its own pK_a.
- The carboxylic acid has an acidic pK_a and will be protonated at an acidic (low) pH: −COOH ↔ -COO⁻ + H⁺
- The amino group has a basic pK_a and will be protonated when basic pH (high) is achieved: $-NH_3^+ \leftrightarrow -NH_2 + H^+$
- At low pH, the amino acid exists in a positively charged form (cation).
- At high pH, the amino acid exists in a negatively charged form (anion).
- Between the pK_a for each group, the amino acid exists in a zwitterion form, in which a single molecule has both a positive and a negative charge.

Amino Acids Carry a Net Charge of Zero at a Specific pH (the pI)

- Zwitterions predominate at pH values between the pK_a values of the amino and carboxyl groups.
- For amino acids without ionizable side chains, the Isoelectric Point (equivalence point, pl) is:

$$pI = \frac{pK_1 + pK_2}{2}$$

- At this point, the net charge is zero.
 - AA is least soluble in water.
 - AA does not migrate in electric field.

Amino Acids Can Act as Buffers

Amino acids with uncharged side chains, such as glycine, have two pK_a values:

- The p K_a of the α -carboxyl group is 2.34.
- The p K_a of the α -amino group is 9.6.

As buffers prevent change in pH close to the pK_a , glycine can act as a buffer in two pH ranges.

Figure 3-10 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Green Fluorescent Protein

Box 4-3a Dr kevin Raskoff

Fluorophore of green fluorescent protein

Biologically Active Amino Acid Derivatives

Common Questions About Peptides and Proteins

- What is its sequence and composition?
- What is its three-dimensional structure?
- How does it achieve its biochemical role?
- How is its function regulated?
- How does it interact with other macromolecules?
- How is it related to other proteins?
- Where is it localized within the cell?
- What are its physico-chemical properties?

A Mixture of Proteins Can Be Separated

- Separation relies on differences in physical and chemical properties:
 - charge
 - size
 - affinity for a ligand
 - solubility
 - hydrophobicity
 - thermal stability
- Chromatography is commonly used for preparative separation in which the protein is often able to remain fully folded.

Column Chromatography

- Column chromatography allows separation of a mixture of proteins over a solid phase (porous matrix) using a liquid phase to mobilize the proteins.
- Proteins with a lower affinity for the solid phase will wash off first; proteins with higher affinity will retain on the column longer and wash off later.

Figure 3-16

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Separation by Charge: Ion Exchange

Figure 3-17a

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Separation by Size: Size Exclusion

Figure 3-17b Lehninger Principles of Biochemistry, Seventh Edition

© 2017 W. H. Freeman and Company

Separation by Binding: Affinity

Figure 3-17c Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Amino Acids Polymerize to Form Peptides

The Three-Dimensional Structure of Proteins

- Structure and properties of the peptide bond
- Structural hierarchy in proteins
- Structure and function of fibrous proteins
- Structure analysis of globular proteins
- Protein folding and denaturation

Structure of Proteins

- Unlike most organic polymers, protein molecules adopt a specific three-dimensional conformation.
- This structure is able to fulfill a specific biological function.
- This structure is called the native fold.
- The native fold has a large number of favorable interactions within the protein.
- There is an entropy cost to folding the protein into one specific native fold.

Favorable Interactions in Proteins

• Hydrophobic effect

 The release of water molecules from the structured solvation layer around the molecule as protein folds increases the net entropy.

Hydrogen bonds

- Interaction of N-H and C=O of the peptide bond leads to local regular structures such as α helices and β sheets.

• Van der Waals force

 Attraction between all atoms contributes significantly to the stability in the interior of the protein.

• Electrostatic interactions

- long-range strong interactions between permanently charged groups
- Salt bridges, especially those buried in the hydrophobic environment, strongly stabilize the protein.

yggfmsseks qtplvtlfkn aiiknahkkg q (31 aa)

Four Levels of Protein Structure

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Primary Structure: The Peptide Bond

- The structure of the protein is partially dictated by the properties of the peptide bond.
- The peptide bond is a resonance hybrid of two canonical structures. • $c_{\alpha} \xrightarrow{c} c_{\alpha} \xrightarrow{c} c_$
- The resonance causes the peptide bonds:
 - to be less reactive compared with esters, for example
 - to be quite rigid and nearly planar
 - to exhibit a large dipole moment in the favored trans configuration

The Rigid Peptide Plane and the Partially Free Rotations

- Rotation around the peptide bond is not permitted due to resonance structure.
- Rotation around bonds connected to the α carbon is permitted.
 - ϕ (phi): angle around the α carbon—amide nitrogen bond
 - ψ (psi): angle around the α carbon—carbonyl carbon bond
- In a fully extended polypeptide, both ψ and ϕ are 180 $^\circ\,$.

The organization around the peptide bond, paired with the identity of the R groups, determines the secondary structure of the protein.

The Polypeptide Is Made Up of a Series of Planes Linked at α Carbons

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Distribution of ϕ and ψ Dihedral Angles

- Some φ and ψ combinations are very unfavorable because of steric crowding of backbone atoms with other atoms in the backbone or side chains.
- Some ϕ and ψ combinations are more favorable because of chance to form favorable H-bonding interactions along the backbone.
- A Ramachandran plot shows the distribution of ϕ and ψ dihedral angles that are found in a protein:
 - shows the common secondary structure elements
 - reveals regions with unusual backbone structure

Figure 4-9a

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Secondary Structures

- Secondary structure refers to a local spatial arrangement of the polypeptide backbone.
- Two regular arrangements are common:
 - the α helix
 - stabilized by hydrogen bonds between nearby residues
 - the *β* sheet
 - stabilized by hydrogen bonds between adjacent segments that may not be nearby
- Irregular arrangement of the polypeptide chain is called the random coil.

The α Helix

- Helical backbone is held together by hydrogen bonds between the backbone amides of an *n* and *n* + 4 amino acids.
- It is a right-handed helix with 3.6 residues (5.4 Å) per turn.
- Peptide bonds are aligned roughly parallel with the helical axis.
- Side chains point out and are roughly perpendicular with the helical axis.

What Is a Right-Handed Helix?

Box 4-1 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

The α Helix: Top View

- The inner diameter of the helix (no side chains) is about 4–5 Å.
 - too small for anything to fit "inside"
- The outer diameter of the helix (with side chains) is 10–12 Å.
 - happens to fit well into the major groove of dsDNA
- Amino acids #1 and #8 align nicely on top of each other.

Sequence Affects Helix Stability

- Not all polypeptide sequences adopt α -helical structures.
- Small hydrophobic residues such as Ala and Leu are strong helix formers.
- Pro acts as a helix breaker because the rotation around the N-C_a (φ -angle) bond is impossible.
- Gly acts as a helix breaker because the tiny R group supports other conformations.
- Attractive or repulsive interactions between side chains 3 to 4 amino acids apart will affect formation.

The Helix Dipole

- Recall that the peptide bond has a strong dipole moment.
 - C–O (carbonyl) negative
 - N–H (amide) positive
- All peptide bonds in the α helix have a similar orientation.
- The α helix has a large macroscopic dipole moment that is enhanced by unpaired amides and carbonyls near the ends of the helix.
- Negatively charged residues often occur near the positive end of the helix dipole.

Carboxyl terminus

Figure 4-5 *Lehninger Principles of Biochemistry*, Seventh Edition © 2017 W. H. Freeman and Company

β Sheets

- The planarity of the peptide bond and tetrahedral geometry of the α carbon create a pleated sheet-like structure.
- Sheet-like arrangement of the backbone is held together by hydrogen bonds between the backbone amides in different strands.
- Side chains protrude from the sheet, alternating in an up-and-down direction.

Parallel and Antiparallel β Sheets

- Multi β -strand interactions are called sheets.
- Sheets are held together by the hydrogen bonding of amide and carbonyl groups of the peptide bond from opposite strands.
- Two major orientations of β sheets are determined by the directionality of the strands within:
 - Parallel sheets have strands that are oriented in the same direction.
 - Antiparallel sheets have strands that are oriented in opposite directions.

In parallel β sheets, the H-bonded strands run in the same direction.

• Hydrogen bonds between strands are bent (weaker).

Figure 4-6c Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company In antiparallel β sheets, the H-bonded strands run in opposite directions.

• Hydrogen bonds between strands are linear (stronger).

Figure 4-6b Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

β Turns

- β turns occur frequently whenever strands in β sheets change the direction.
- The 180° turn is accomplished over four amino acids.
- The turn is stabilized by a hydrogen bond from a carbonyl oxygen to amide proton three residues down the sequence.
- Proline in position 2 or glycine in position 3 are common in β turns.

